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1. INTRODUCTION

of the basic problems in statistical communication theory is that of

detecting, at the end of a communication channei, a signal imbedded in noise.

The Gaussian model is a model for which the noise as well as the received

signal are Gaussian orocesses with eauivaient laws, so that the resulting

detection problem is nonsingular. Ulnfortunatelv "most solutions to oroblems

involving signals in Gaussian noise are tasec on a knowledge of the auto-

correlation function or -nectrum (if the noise is stationary). In fact, of 4

course, as mentioned before, they are rareiy, if ever, known precisely" (19).

This observation motivates the oaper just quotecl and, in it, its author in-

vestigates the stability of the decision functions based on a model with Gaus-

j sian noise and covariance function R in two ways. First he considers the

S- ,case of Gaussian noise with covariance function R+A instead of just R. How-

ever "the restriction to Gaussian measures were better removed even though

the noise is nearly Gaussian. if the stability criteria are to be believable in

practice" (19). Stability is then understood as a form of continuity of the

decision functions when the topology is that of weak convergence, a conceot

which is now widely used in the field of robust statistical procedures (11).

Of course "this formulation does not allow much hope for actually calculating

useful bounds on errors" (19). Since the most important elements of a detec-

tion problem are the probabilities of false alarm and false dismissal, one may

try to study the stability problem by taking an intermediate position between

the two described above. This Is 'he object of the present work and the Idea

Is to look at specific contaminations of Gaussian laws In order to find analytic

21
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expressions for the orobability of false alarm ana that of false dismissal as

functions of contamination. The aim is not so much to oroduce models for see-

, cific Gaussian dlisturbances as to get some feel for what these can do to the

probabilities of false alarm and faise dismissal.

It shall be assumed that sionals and noises have finite energy, that is are

stochastic processes with square integrable oaths. These will induce probabilitv

measures on the Borel sets of L 20, 1) , the space of equivaience classes of

square integrable functions. L (0, 1) is a standard seoarable Hilbert soace

and it is notationaily simpler to work with a general secarable Hilbert soace H.

which we shalt do: B (H) is the sigma algebra generatea by the onen sets of H

and is the smallest sigma aigebra which makes all continuous linear functionals

<-h> . h in H, measurabie. >.. is the inner oroduct of H and the corres-

ponding norm is I '. All measures considered shall be defined on B(H).

They are typically obtained as follows. If X(wt) is a stochastic orocess defined
T

on the probability space (Q, A.u) such that ! X (w,t) dt is finite for-p-almost
0

every w, it induces, on B (H). a measure PX defined by

Px XN in H: <x,h 1> in B 1 , <x, hn> in 8 n I

=P(winn: <X(w,'),h.> in B 1 ..... <X(,,.),h > in 12% 1,

where h 1 ... ,hn belong to H and B 1 .... Bn belong to B(M) , the Borel sets ofV n
M 0. Here <X(w,),h> = IfX(,t) h(t) dt.

0
If S denotes the signal and N the noise, the detection oroblem (N,S+N) is

nonsingular if PS+N and PN are mutually absolutely continuous, that Is P S+N(B) 0

if and only if PN (B) = 0 for Borel B in D (H). The singularity of a detection oro-

blem on a space of infinite dimension is notoriously unstable (19). Consequently.



for reasons analocous to those which recuire detection oroblems to be non-

singular (3. 14, 18), attention shail be restricted to laws which are not only

in the neighbournood of Gaussian laws but also equivaient to these.

One tool which has proved useful in investiaations dealing with robust

statistical procedures is that of contamination (21) . Let P be the law of the

chosen model; its contaminations are of the form pC = (1_-6p+Q ' where Q

is some probability measure and 0 < E < 1. If P = PX and Q = Q and U is a

random variable, independent of X and Y, which takes the value 1 with pro-

bability 1-E and the value 0 with orobabilitv E , then Pc is the law of Z =

UX+(1-U)Y, that is the paths of Z are obtained by sampling among those of

X and Y according to the law of U. In this paper we shall use two types of

contaminations. The first type tT!-contaminations) is constructed with mea-

sures Q which are Gaussian and the second type tT2-contaminations) with

measures Q which are absolutely continuous with respect to P and have a

quadratic form as Radon-Nikodym derivative. The use of such simple conta-

minations has a number of advantages. First of all, their covariance has the

form R+A so that we have a nongaussian generalization of the stability study

within the Gaussian model, as in (19). Moreover, the situation is at the same

time sufficiently simple so that one can obtain analytic information on the pro-

babilitles of interest, and sufficiently complex so that one can exhibit features

which do not appear in the Gaussian perturbation model.

The first part of the paper deals with the basic properties of the contamina-

tions just introduced. We show in particular that they share with Gaussian

laws many properties, the main exception being that they do not necessarily



converge weakly to laws of the same type. In the secona oart of the oaoer we

use these contaminations to study the stabil itv of the aetection oroblem in case

of sure signal and additive Gaussian noise. Besides giving a number of auanti-

tative and qualitative results involving actual and nominal orobabilities of

false alarm, we are able to show that weak convergence alone fails in cenerat

to control the behaviour or the parameters which determine the probabilities of

false alarm: what really matters is the way in which this convergence takes olace.

Finally, we show that the type of contamination which is considered plays an

important role. Thus contaminations by Gaussian laws result in worse oatholo-

gies than contaminations of the second type considered: the former have in a

sense "too many degrees of freedom" for weak convergence to control.

We consider here only the detection of sure signals. For some results in the

case of stochastic signals. see (7). Proofs are outlined in the aoOendix.

2. CONTAMINATIONS

P will always denote a Gaussian probability on B-(H). It is determined by

its mean mp and its covariance operator Rp, and we shall write P %, N (mp, R p.

m is an element in H and is uniquely determined by the relation

E p<,h> = cmP, h>. for all h in H.

In case PP X" mp is the mean function of X. The operator R is uniquely de-

termined by the relation

E g {h>-<m Ph>(.,k>-<mPWka < R h,k', for all h and k in H.

In case PP and Rx(st) Is the covariance of X, R is defined by
T

IRp) (t) f R x(t,u) f(u) du.!0
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Let (aeb) (x) = <b.x>a. Then R_ has the representation

R = 1 N e. e,
k=1 k

where X > 0, Z X. <and {e k-is a compiete orthonormai set in the closure
k k=l K

of the range of R .Since this iatter set is the suooort of P. one can always sup-

pose it is H. ek is an eigenvector of R corresponcing to the eigenvalue X, . It
k P k

has been shown that Gaussian measures P on the Borei sets of L 2 (0,1) are all

of the form PX' X a Gaussian orocess with oaths in L,(0,1) (15). The Fourier

transform of P, FTP. is given by the relation

FTP(h) = E (exp{i<.,h>'}) = exo(i<mp, h>-<R h.h>}.
P P'

If P = Px,.FTP(th) is the characteristic function of the random variable <X(-,-),h>,

t real.

For Ti-contaminations, we choose Q , N (m R Q), while for T2-contaminations

we choose dQ= C-1 1 1A1 (x-a) Ii dP. A is an operator whicn is linear, continuous.

positive and self-adjoint, a is a fixed element in H and C = trace{A(RP +(mP-a)9(mP-a))

c is chosen to be C(c"C) - , where c is nonnegative. We have already indicated

that contaminations can be thought of as the laws of processes Z = UX+(1-U)Y,

where X has law P and Y has law Q. We are going to add the requirement that X

and Y have the same set of paths. One way to achieve this is to require that P

and Q be mutually absolutely continuous, so that they have the same support. In

this way, we discard cases such as those for which X would have continuous paths

and Y discontinuous ones, for which no doubt would exist as to which of P and

PC obtains. For examples of T2-contaminations, see (8.9). In particular T2-con-

taminations of stationary processes yeld harmonizable ones. We thus have

Proposition 1
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If PC is a TI-contamination, P 3nd P' are mutually absolutely continuous if

and only if P and Q are. P and its T2 -contaminations are always mutually abs-

olutely continuous. /

The first assertion follows from the dichotomy theorem for Gaussian measures

(10) and the second is a consequence of a zero-one law for Gaussian measures

(2).

Assumption

P and pC are henceforth assumed to be mutually absolutely continuous./

We shall first need the mean m and the covariance R of PC. A direct cal-
C C

culation yields

Prooosition 2

For T1-contaminations mc = (1-e)mp+EmQ and

Rc = (1-)Rp+¢RQ+C(1-) (mp-mQ )e(mp-mQ),

and for T2-contaminations mc = m p+2 (c+C)-R pA(m p-a) and

C P P PR = Rp2(+)lp~-(+l2p~paem-l~.

Remark 1

From Proposition 2 it follows that both types of contaminations have a mean

and a covariance of the same form, that is

mc =mp+Rib and Rc = R 1.I+T+i tot) R&

(P and Q have been chosen equivalent in the T1 case so that in particular mQ

belongs to the range of RI) -These are essentially the conditions which ensure
P

that a Gaussian law with mean m Cand covarlance Rc is equivalent to P (16).

so that, even if P is wrongly as .umed to be Gaussian. there is no way to dis-
C

~criminate surely between P and pc.
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For every fixed h in H, one may define a real random variable Xfh} by set-

ting X(h}(x) = <x,h>. x in H. For T1-contaminations, the law of X{h} with

respect to pC, defined by

* pC (B) PC(x in H: X{h}(x) in B), B in B(R),
X{h"

is the obvious mixture of the laws of X{h-with respect to P and Q. For T2-

contaminations one has

Proposition 3

Let a (h) =2(cC) -' <R pA(mp-a),h>,
-1

s(h) 2 (c+C) R pAR ph, h>,

(t) exp{it<mp, h>- t 2<R Ph h>}.

The characteristic function € of the random variable X{h} with respect to PC,

a T2-contamination. is given by

* * (t) = {1+ic,(h)t- 8 (h)t 2 10 (t).

Let a(h) = 1-(c+C) {<R AR h,h>/<R h,h>},

P P Pb(h) = 2(c'C) "1 {<R pA (m p-a) ,h>/<R ph,h>!-.

c(h) (c+C) - 1 {<R AR h,h>/<R h,h>'},
P P4  P

G(y) = Gaussian density with mean <mp, h> and variance <R ph.h:.

The density g corresponding to $ is given by

Remark 2

Suppose that a = mp and let z = (y-<m, h>)/<Rph,h>-,
: 'i "L 2 =(c+C) - 1 (<RpARph,h>/<Rph hh>},

and K2  (2r<R ph,h>}

The density g of Proposition 3 can then be written

_2 %,A-
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2 2 2'
g y) yZ) = K (1-L +L 2 z2'exo:{-+z 2 .

If L2 < 1/3, for which a sufficient condition is (c+Cr- !R -AR -  < 1 / 3 ,y has_ =I p P1 -

a unique maximum for z = 0. Otherwise ,Y presents two symmetric peaks. Laws

with such densities have been shown to model some types of noise (17). Since

1AR is a compact operator, <RARhh>/<Rh,h> = <R!ARk,k>, with k
IV.P p * Pp

R ,h/ , j1Rh I1, will be small in all but a finite number of directions. This shows

the kind of departure from normality one can expect. A sink which would aopear

in the density of ail functionals would eventually touch the origin, making the

law singular with respect to the Gaussian one. To obtain two oeaks with Ti-con-

taminations, one would need distinct means. The peaks would then appear in e-

very direction, but the sink would be controlled in size. Another interesting

feature of the density g is that it is normal for h in the kernel of R ARp. The
P P

measure pC can thus exhibit a Gaussian behaviour in many directions without ac-

tually being Gaussian. This "Gaussianness" is controlled by the range of A. This

feature is absent in the case of TI-contaminations.

One space of interest in linear inference problems is the closure in the real

L 2-space L2 (Pc) of the set (X{h},h in H) of random variables. This subspace is

called the linear space of pC and is denoted L (PC). This terminology arises as

follows: if pC = PX, linear operations on X are of the form <X(-,.) ,h: = X{hi.

I. L(P) contains only normal random variables. The next result states that L(Pc)

also contains random variables which all have a law of the same type.

Let PC be a contamination and S be the operator Rc+m c m c If f belongs to

L(pc), the following relaticn defines an element of H denoted h(f):

h z = xf(x)PC(dx).
~H

i 11 ° . ;
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For two such elements. h (f) and h (g), one can define the inner product

• <h(f),h(g) • = E (fg).

H (PC) pC

Let H(PC) = (h(f),fin L(P.i)} and define U :L(PC)- H(Pc) byU .(f) =h(f.

pC pC

H (PC) is then a Hilbert space, contained in H as a suoset, and U is a unitary
pC

operator. As a set, H (pC) is the range of S! and is isomorphic to the reprodu-
C

cing kernel Hilbert space of the process (X{h}.h in H) (Lemma 1, Appendix).

Let now B be the operator from LtPC) to H defined by Bf = RIS U f. B is well
pc PC

defined aod continuous tLemma 4, Appendix). Since <R h,h> < <S h,h>, R1 =

C C C

S1W c , where W is a bounded operator on H (5). Recalling that m c = mp+Rlb and

that R,= R_ I.l+Ttt+t)R:0. R;(I+-T)R' (Proposition 2 and Remark

c P P F 'P

I), one has

Proposition 4

Let fbelong to L(PC) and hh belong to H. Suppose that U f S2 and
n PC .c

h = lim S1hn (We have assumed, which is no restriction, that P has full sun-

port. This implies that H is the closure of the range of S .). Then:c

1) there exists m in H such that lim <m h = <m,h> (If m belongs to the
P n P

J range o~f R"I- <m. h> = <R,}pBf ),

2) E (f) = <m,h>+<b, Bf> (If m belongs to the range of R I E (f) =

' <b+R-I Bf>.);

3) V (f) = I!(l4)1 BI 2 = IIW [. 1 2;
pC

4I) For Tl-contaminations, the characteristic function t of f is given by

t.

, %, 
.



0(t (- 0 t.It) +c t) where 6, is the characteristic function of a

Nk<m,h>, '!Bf! -)-randcm variable and t. is the characteristic function of

. * 2
a(<m,h>-<R-' (m - ,ef', " W hi )-random variable; for T2-contamina-

tions, 0 (t) = (Ii-it<b. Bf>-ijt TVBf I (t) .

This result yields a useful computational tool, stated as a corollary.

Corollary

Let fl,.  fJ belong to L(Pc and h ...... h solve U f. =S'h .Write m,,n n Pc CI Ci

' m3 for the n-vectors with rescective entries <m,h. >,-<B R1 n m ) ,f.>
2, 3 P P Q L (PC)

B1 b,f.> ,and M. M2 M1 for the (nxn) -matrices witth rescective entries

<B3 Bf.,,f.' > B< (l+T )B-f.f. > <B *T~f.,f.> ,where T solves
L (PC) Q L (PC) L (PC) Q

R R (V+T )R. Then, if ha anivrs,( 1  f )has a density g
Q P Q P n

given by, in case of T1i-contaminations, g(X-) =(1-c)g, (x-)+eg, (x), where g,

is the density ofa N(m_,M,)-random vector and g2is the density of a N (m , -m2'M,) -

random vector, and, in case of T2 -contaminations.

+< \M ( M) x (xm
(x 0-trace(M M 2 ) -<X-rM M1 J<.> ,(

There are two reasons which explain the effectiveness of Gaussian laws for

solving problems of detection and estimation. The first is that their nonlinear

space L,(P) is the direct sum of the symmetric tensor powers ot their linear

space L(P) (12), which roughly means that the elements in L 2 P) are limits of

sums of polynomials of increasing order evaluated at an orthonormal basis for

L (P) . The second reason is that the set of Gaussian laws is closed for the topo-

logy of weak convergence. It can be checked that the first result remains true

4111111-~
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for T1- and T2- contaminations. The second however no longer obtains: the set

of contaminations is not closed for weak convergence. as the following results

show, and it is at the boundary that cathologies occur.

Proposition 5

C
Let (P ,n in N) be a family of TI-contaminations which converge weakly to

n

the probability M. f I ir mi e =0 or lir suo = 1, M is Gaussian. Otherwisen n

M = (1-j)M1 +U M , where M. and M 2 are Gaussian and 0<u <1. M is not neces-

sarily a Ti-cor'minatiun and is 3aussian if and only if N41 = ,2 (in particu-

lar MI and M2 need not be mutually absolutely continuous) ./

Proposition 6

Let (Pc,n in N) be a family of T2-contaminations which converge weakly to
n

the probability M. M has then a characteristic function s given by

*(h) = (1+i<d.h>-<S VS h,h>) exo:(i<n,h>-7<Sh,h>),

where S is a linear operator which is compact, nonnegative and selfadjoint and

V is linear and bounded (to have a T2-contamination, one needs an S which has

finite trace and a V of the form S-WS ). S has finite trace in one of the following

two cases:

1) 0<liminf{C /(c +C ) 1<1im sup{nC (C +C )<1:
n n n n n n

2) if a (h) is zero when IR hi is and fc +C ) (<R A R h,h>/< R h,h>)n n n n n nn

otherwise and if 3 (h is zero when I RhiI is and <b h>/cR h,h> otherwise, t
n n n n

~~sup(a Wh)n,h)<l and sup( is N h l,n ,h } < 1 ./

n n

3. STABILITY OF SINGULARITY

Consider two Gaussian measures P. and P2 representinq respectively the law

of the noise and the law of the received signal in some detection problem. Detec-

.... .. I Il I ,... .... ! I i '1 " ' . . . .S
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tion is nonsinguiar if and only if mr-m, belongs to the range of the sauare

root of .(RI+R 2) and if R., = R,(I+T)R- with T HiIbert-Schmidt and a(T)>-I

((T) denotes the spectrum of T) (16). Suppose now the actual laws one deals

with are PC and PC , TI- or T2-contaminations. possibly of a different type.

The following resuit oroves that the criterion for sijrgularitv which applies

in the Gaussian case applies to T1- and T2-conraminations as well, so that

singularity is stable over the class of Ti- and T2-contaminations.

Proposition 7

Let PC and PC be TI - or T2-contaminations with resoective means m, Z

and m 2and covariances R and R . The detection problem (P,pC,
C,2 C, ] C, 2

is either singular or nonsingular and it is singular if and only if m -m

belongs to the range c! t.e square root of 1 (R +R 1 and if R =
C,l C, 2  C,2

R (l+S)R , S Hilbert-Schmidt and (S)>-1. Furthermore, if the detec-
C 1

tion problem is nonsingular, dP /dPc,= (dP,/dP,] (dP2 /dP 1) (dPIdF) .

4. DETECTION OF SURE SIGNALS

One observes a sure function which can have two possible sources: it is either

a noise sample N or a distorted signal sample s+N. where s is known. The

nominal model is that model for which the law P of the noise N is Gaussian

with mean zero and covariance R of the form : I e (en , as defined in
Pn n

the introduction. The actual model is the model for which the law of N is pC,

with mean zero. The nominal model represents the model actually used and

the actual model represents the system which is being investigated, the 'true"

model. The corresponding detection problem is nonsingular whenever S be-

longs to the range of the square root of R (6), which is isomorphic to the

_P
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reproducing kernel Hilbert space of R (Lemma i, appendix). Since R and R
P P pC

have square roots with identical ranges(Lemma 4. appendix), the detection

problem is nonsingular for the actual as well as for the nominal model. It shall

henceforth be assumed that detection oroblems are nonsingular.

The maximum likelihooa decision function for the nominal model is given'by

D(X) = (s /Xn 1Me 1 withs =s.e> and Xe' (y) = ye (19
n nn nn

A. The case of Tl-contaminations

By choice, pC = (1-E; ?+Q with Q N(m, R Q) and P and Q mutually absolu-
:QQ

tely continuous. Then R, RpI+T Ri, T Hilbert-Schmidt and a(T )>-1 (16).
OP Q P0 Q

Since mp'= m c = 0, mQ = 0 (Proposition 2). Let e n+1 ... en+p span the range

n+~

of the projection , C = '!,p Qn~p l2and!T 1IR-nsp 2

ThenE =1 equals C, if X N and equals CI -C2 if X = s+N.

so that D () belongs to L 2 (PC). When X = N, lt Y, be a normal random variable

with mean zero and variance ! I s 1 2 and, when X = s+N, let Y have the
P ,1

same law and variance, but mean equal to the variance. Similarly, let Y2 be

4 2
normal with, when X = N, mean zero and variance I R5I 1 , and, when X = s+N.

mean I IJR-1 1 2 -and variance R s 112. Let f1 and f be the respective den-
0 2

sities of Y 1 and Y 2 " Then D (X) has density f(x) = (1-f 1 (x)+cf2 (x. Finally

letp =PC D(X)>cIIN}and pn= PD(X>IN}. Thenp -p= (QD(X))-,X=N!pn

0 denotes the distribution function of a N (0, 1)-random variable. The polar

decomposition (22) yields R1 = Rp(I+T )IU, where it is no restricition to sup-

: pose U unitary, so that R"1 =U.(+TQI' R .Let a = /IRp sI I,

Q

.. . . .. ......... .. ... . .. . .T . . . . = 7 I '1 -m.od s



iR s/! JR_'s', t I (V+T )sH . Then 0 n-pa (0_ S)=
P* PQ

Proposition 8

Fix s and 8 > 0 - (3/4) . T7hen

1) a = sup (1pa-pr" 1,PC a Ti -contamination! V (8-

2) there exists {P",k in N) Such that W-lim P= P (W- indicating weak con-
kk

vergence) and lrn k~k '

The reason fcr 2) is that P and PC can be close in the sense of weak convergence

as well as close to beirg orthogonal. rhe result also snows that the discrepancy

between pa n pn can increase with the level of the test.

Proposition 9

There exist sequences iP C. skk in N) such that W-lim kC P. lim 5k = 0 and

k k

The reason for this phenomenon is that the class of admissible signals istoo

large for p a_ pn!1 to be controlled by weak convergence.

Another way to compare pa and p'n is to look at the ratio p a1/fl One has

As afunction of t, p a /pn decreases from 1-c+i (1-0 (8)) 1 to I -c. One thus

has p acpn if t>1 and p a>pn if t<1. When the level of the test increases. the

behaviour of pa '~depends on the relative behaviour of 5, cand t . Subpose thus

that t goes t '-r than S goes to infinity: pa~ is unbounded, so that

p n goes to zet an pa. If now c goes to I are t goes to infinity, Pa0

*1goes to zero so that pagoes to zero faster than Pfl. We have seen in Propositions
8 and 9 that this behaviour can occur as PCconverges weakly to P.

As the examples considered show, weak convergence. when c does not go
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to zero, depends on the behaviour of R1 T R4. whereas the behaviour of loa-n
PQ P

and pap depends on that of T and these behaviours are not necessariiy rela-

ted.

Let now pC be the law of s+N and oa be the probaoility of false alarm for the

maximum likelihooa detector for the actual detection mocel. that is oa = PCf-dspc> ,P .

Again one would like to know to what extent pn = P{dP./dP>a is a "oood" atoroximation

of Pa. Let k = (1-Ee (dQ/dP) }- 1 -c+c (dQs/dQ) (dQ/dP) (dP/dPs ) }. Then

dPc/dPc = k (dP !dP), so that k represents the effect of contamination. The following
s 5

assumptions allow one to obtain a manageable form for k and will be made for the

remaining part of this section.

Assunotions

1) s belongs to the range of Rp(which is a subset of the range of Rp)}

2) Rpand RQ have the same range.

3) Ro 1-Rp1 has a symmetric ciosure G whose domain has P-probability one.
P

In particular, when R -R is bounded on ihe range of R G is bounded and

self-adjoint (16). Let K(x) = (1-0)det 4(l+TQ)+cex)(--<cG>Yx>}. Then k(x) =

K(x-s)/K(x) (16). Thus, whenever s belongs to the kernel of C, the actual and

the nominal probabilities are the same. One however has

Proposition 10

I"he range of k can be {x in [I:0<x<-./

Proposition 10 shows that the values taken by the actual and nominal likelihoods

can be quite different. Since the global behaviour of k. as a function of c. G and

TQ is difficult to analyze, one may try to evaluate k at critical points. There are

two of these of particular interest, 0 and s, at which one presumably would deci-
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de that respectively no signal or a signal has been sent. Since k(s) -/k(O), it

suffices to consider k f(). It is shown in the next oroonsition that k(O) can be as

large as expj; s V}i which is the value taken by the nominal likelihood when

the exact signal has been received. The actual likelihood has then the value one,

whereas the nominal :ikelihood can be very small.

Prooosition 11

sup(k(O)kQ} >xp iIRP-sI-I J.1

Here again, the bound can be approximated when PC is close to P in the weak

sense. Formulae for oa are quite complicated and only in particular cases can one

obtain global bounds for pa in terms of pn . Here is one case which shows what

kinds of restrictions are then required.

Prooosition 12

kLet = {k/(1-Ek)det2 (I+T Q 11. Suppose that Gk is nonnegative and that
k(Bk <M< -. Then. for a>O and W-lim PC =P,

P{dP /dP>aM1 < lim inf P.C {dpc /dPc>} < Iim su P c {dPk s/dPc,1 < P{dPs /dP>a/M}s k ksk k k , k -

Thus a uniform bound on the admissible perturbations is required and the bounds

obtained are good only if the perturbation is uniformly small.

B. The case of T2-contaminations

The features of Ti-contaminations exhibited above indicate that stability results

can only be obtained by restricting the class of signals and/or knowing some a

priori uniform bounds on the perturbations one must consider (we have in particu-

lar assumed in Propositions 10, 11 and 12 - see the "AssumptionsO preceding the-

se statements - that the signal belongs to the range of Rp, rather than to the range

* of Rp which Is imposed by a nonsingular problem). In this sense. T1-contamina-

4 
A
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tions have "too many degrees of freedom". One can thus attempt to obtain stability

results by restricting the class of contaminations considered. This is what one a-

chieves by introducing T2-contaminations. Whereas e and 0 act as indeoendent

variables for Ti-contaminations, for T2-contaminations, : depends on 0 in the sense

that c = C/ (c+C), where C is a function of the parameters which determine Q ( see

in particular the proof of Proposition 13). tntuitively, T2 -contamination s are ob-

tained from Ti-contaminations by keeping the first terms of the Taylor exoansion

of the likelihood of Q with respect to P. This indicates that classes of contaminations

intermediate between T1- and T2-contaminations can be obtained by keeping more

terms in the Taylor exoansion considered above.

It is again assumed that m = 0, which is achieved by setting R Aa = 0. As in
P

the case of Ti-contaminations. one may check that D (X) belongs to L. (PC). Let Y1

be the same random variable as in A. and f1 be its density. Let e = ! PAsj ( IRp

and f2 tx) = x2 f 1 (x)/I /R; sI .With respect to P. D (X) has then a density f given

by the relation f(x) = (-)f 1 (x)+Ef 2 (x). Let IA be the indicator of the closure of

a n -the range of A and S.p ,p n and s have the same meaning as in A. One then has.

if K = IAIRpisI 12/(c+trace (ARp)A+ 2 Aa 12 papn = K lA(S) (x 2 -1)exp(-Ix 2)dx//w.

The next proposition shows that the pathologies illustrated in Proposition 8 and 9

cannot occur in the case of T2-contaminations. The reason is clear: C is not inde-

pendent of Q. There is a restriction however: s Is required to belong to the range

of Rp.

Proposition 13

Let s belong to the range of R and W-lImPP. Pk

A simple limit calculation (4) gives the relative behaviour of pa and pn: pn tends

t.
L



-19-

to zero faster than oa.

Proposition IL

For fixed E and large ,a /' n

Finally, we consider again the actual likelihood and the actual orobability of

false alarm, still denoted oa . In contrast to the case of TI-contaminations, the func-

tion k of Proposition 10 is bounded for T2-contamanations. Indeed. if K(x) = c+l !A(x-a) $

dPc = (K /(c+C)}dP. so that, if k(x) = K(x-s)/K(x), dPc/dPc = k(dP/dP). Then

Proposition 15

Let aA belong to the kernel of A. X = f1+(1+c/<As,s>lI and XM = (1-(+4c/<As,s>Am "

Then k (a+ A.s'a A ) c k (x) < k (a+.s+a) /

From Proposition 15 one can get a result which is more satisfactory than Prooosi-

tion 12. but which is still insufficient in the sense that it depends on a priori know-

ledge on the perturbations, which is unlikely to be available.

Proposition 16

If s is in the range of R and lIr sup Cn/Cn < -, then, when W-lim pC p.n

lImPc(dPC /dPc>a} = P{dPsdP)a}/.n n, s n

5. SUMMARY

Let p1 = P{dPs/dP>}'l, the probability of false alarm for the Gaussian model.

= PC(dPs/dP~a}, the probability of false alarm for the *exact* model when the

detector is the likelihood for the Gaussian model, and c3 x PC(dPC/dPc>*}, the

probability of false alarm for the "exact" model. We have considered the case of a

Gaussian detection model which is only an approximation to an *exact" contamina-

ted model and compared the quantities PII P2, and p3 when the law PC of the "exact"

model is close in the topology of weak convergence to P, the law of the

L
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nominal model, which in the oresent case is Gaussian. We have seen that the

quantities !pl-pi : and piipi, i=2,3, depend on the type of contamination as well

as on the distance between P and pC. Procosition 9 shows for example that one

can have, for a T1-contamination, 'pq-p2 ' _ >0, though s and the distance

between P and pC are negligible. Proposition 16 shows however that uncer fairly

mild restrictions, Cipl-P3 1 is smail as soon as P and pC are close and pC 's a T2-

contamination. We have also shown that looking at the likelihood can be rather
"7 I,

misleading when the model is not exact.

6. OUTLINE OF PROOFS

The proof of Proposition 4 is based on four lemmas which we first state.

Lemma 1

Let Sc, H (PC) and U be defined as in Proposition 4. For f in L (PC) define!. pC

Ff: H- ER by the relation F N f(x)X h(xlPC(dx). Let H(S) = Ff f in L(Pc)

<Ff, g>H(Sc) =EPC(fg) and U S  :LPc)H(Sc) be defined by the relation US f= Ff

Then

1) H(Sc) is a Hilbert Loace (the reproducing kernel Hilbert space of X) and U is a

C
unitary operator,

2) 1 b(n)Il I Is IS' 111 htf) I NI c)
C ~ H (PC)'

3) the two sets H (PC) and range (S1) are equa

4) <Sih,Slk> = <h,k>, so that SI: H- H(Pc) is unitary,C C H (PC) C

5) ifU f=Sthandfn = X(h n , then f=lim fnnly yifh limSh" inL(P c

and H respectively./
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Lemma I follows from the definitions and first principles. These also yield

Lemma 2

Ifis injective. trace (AR lR AR! Iif and only if A =h~h./

* ILemma 3

If PC is a T2-contamination and T+-t~t is the operator of Proposition 2,

p.:It suffices to prove that -1 is not an elgenvalue of T+rt~t and this follows from

the inequality 1+{ (1+<T,h h>) 1-1} < IHb I! < 1.1

j, Lemma 14

Letf=T+,tt. Then

1) R4 and R1have the± same range and RI= R I(l-f) 1V, where V is unitary,
C P C

* ~2) the map B: L(P) ~H defined by the relation 8f =R*SC1 fP slnaCndcniuu.

2!..: 1) follows from Lemma 3, (5) and the polar decomposition (22). B is well

defined on H* and, if f is in H*. I !BfjI !Kt' Iff, 1L PC

Proposition 14

pf.: Let f = X(h 1. Then f = lrn f by Lemma 1. so that, by Lemma 4. Bf = lrn Rihn.

Furthermore. E I (f) = Ilim <m h n +<b, Bf', so that I im < p is a continuous

linear functional on L(P C). The first part of 1) foliws by the Riesz theorem and

Lemma 1. If m belongs to the range of R. m. <Phn>tends to <R mPBf> . The result

on the variance follows from Lemma 4 and that on the characteristic function from

Proposition 3.1

Proposition 5

p. For c, x, and y In the open ur't interval, let f E(x'y) = (1-C)X+Wy. IftOuc1.

there Is a B in the open unit interval such that f C(x,y) ! 1-8 implies x i-1-. and
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y > 1-a. Consequently, if {P ,.X in A1 is relatively compact, so are {P.,.in A}

and .Q ,X in Al. provieed c and e is in the ooen unit interval

AA

Suppose now f Pc, in A I converges weakly to PC so that 0 < I rn inf e, < IJim sup S<1

If {Pn n in N1 is a subsequence of jP ,, in Al. let nk 'converge to e in the

open unit interval. Set pC, = (1-z)P n Q r converces weakly to pCnk nk nk -k

The remarks at the beginning impiy that ;P nk . is relatively compact. The proposi-

tion follows. To see that the limit is not necessarily a contamination, consider {pC}
n

with P~ = (1 -) P+£Qn, P , N(0 R) Qn N(0,R (I T )Ri) T = ((1/n)-1)ueu,
n P n p n P n

u a unit vector./

Proposition 6

* . : Because of (9), pC has characteristic function given by the relation

4 *(h) = {1+i<b,h>-<Bh,h3>exp{i<m,h>-i<Sh,h>l, where B and S are bounded

linear operators. Since the convolutions f pC*pCI converge weakly to {pC*pc},I~ n*

the latter has characteristic function I(h) 12= (<b,h>2+1-<Bh,h-)2iexp(-<Sh,h>}.

I# (h) 12 is continuous in the S-topology and thus, if {x n converges weakly to

zero, lim ! (Xn) V = 1. Consequently, lir sup <Sxn,Xn > < =. If this limit is

positive, choosing if necessary a subsequence, one may assume that lim <SXn, Xn> = o2,0.
= tl sotai B > = 0 and

One then has that lim (I-t 2 <BxXn>} exp{o2 t 2 l, so thatnim Bx n x 0

consequently that im <Sxn, Xn = 0. S' is thus compact and thus so is S. From the

inverse Fourier transform of , one obtains that <Bh,h> < <Sh.h>, so that

B = SITSI, T bounded.

1) yields, as in the proof of Proposition 5, that (P ) Is relatively compact, so

thet {R n } is compact. 2) yields that Pc hasa Fourier transform 4 n such that

Ij(h) 12 <exp(-(I-8 )<Rnh,h:}- which also implies that ,Rn} is compact. That
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S has finite trace follows then from (20)./

ProDosition 7

pf. : Recall that Pand PC have been assumea equivalent. Using the result (1) "A

and u orthogonal and , and v eauivalent imnly u and j orthogonal", one can see

that the problem (P-, Pc) is either singuiar or norsinguiar and that it is nonsin-

gular if and only if the oroblem (P.,,P 2) is nonsingular.

Suppose then that the oroblem (P, P2 ) is nonsingular. The ooerators RR

(R1 +R2 ) have all a sauare rcot with the same range (161 and. by Lemma 4 of 6.,

RC i and Rii=1,2, have a sauare root with the same range. Thus mc, -mc,2

ml-m 2+Rib -Rib 2 belongs to the range of the square root of i(R I+R, 2 ). The
1 2 2

polar decomposition and the equality R2 = Rz 2I+T)R yield R = R7(l+T)1V, where V
1 2 1

is unitary (R1 may be assumed injective by restricting attention to the suoport of

* P11. Using again Lemma 4 of 6., one can write Rc,2  ,WRI , whereW isa

product of operators which are either unitary or of the form (I+UI , with U

Hilbert-Schmidt and a(U)>-1. Unitary operators always appear in pairs involving

the operator and its adjoint. Since (O+U)±i can always be written inthe form

14b with U Hilbert-Schmidt, W has the form I+S. S Hilbert-Schmidt. To see that

o(S)>-1, it is sufficient to remember that R and R have square roots with' c,1 c,2

identical ranges, so that I+S is invertible. The reverse implication is proved

similarly./

Proposition 8

.
f. : Let H (s) be the subspace spanned by i and H (s) be its orthogonal

subspace. Let () denote the projection onto H (s) and .1 (sir the projection onto

H(s) Set T = e1(). Then t = (1+e) . Since 8 can be any real number strictly

IQ
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larger than -1, t can take any positive value. As a function of t, sj 03)-D(qt)

is a convex function with a minimum at t = 1 and extreme values at t = 0,;vnere its

value is E[ (D)-Il, and at t = =, where its value is 1-. (e)}. Furtermore, for

S() > 3/4, *(8)-j > I1- (.).

{PC} converges weakly to P if and only if either rs, converges to zero or {Q

kl oP. If the former obtains. lim
converges weakly to p k; = 0. Let {ak! be a se-

quence of positive numbers whose sum is finite. Define k= 0 for I = 1. k-1,

9k.k = (/ek)-I, ek being defined below, and, for I >k, k, = '" Let s k = <s,ek>

and choose f9e such that lir e s= = . Then {s2/ (1+ 9) > , so that
k k K r k k,l kk

kk

Since the sequence ;ek } is uniformly bounded, lim <R ch'h> = <Rph,h>
• PP

k
Furthermore trace (R ) is bounded and r <cR ce,e> converges uniformly to

P k I=m P k

zero as m increases to infinity. This insures that W-lim PC P (13) .Jk

Proposition 9

pf.: Set sk =X ek. Then lRs I sk =Rp Sk/ RP kill =k.

Let T Q = k. (sk).Then, as in the proof of Proposition 8. tk = (1+ek)

<R ch,h>= <R ph,h>+c ekX k , trace(R 9 = trace (RP)+EkekXk, and
Pk Pk

Z' <R C el eI > < Z. Re,le I>+ k 0k k' It thus suffices to choose (9 k such that

I=m P l=m

kklira Ak.=- and lira 0 k Ak = 0./

Proposition 10

f Fix g so that it is not orthogonal to sand r > -, R1 12. Set g ,' I IR-g!
P

-.. =R g* -or
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and y = R g /1+! 1IR !g! 2) Let '1(6- be the projection onto H(g) and
P P

.I(g) be that onto H(g) Then, ifT = y .7 (a), (l+TQ)1 = -r Rpg) (g)-=

I+R(rgO)R '. So G = ggandK = (1-) ) (11 R!1 2 exo ir<gx>,.
P - p P I I

Set <g,x> = y, <g,s> = a, -j.ry 2 = P(y). k can then be expressed in the form

k*(y) {A=(+BexD{P(y-a) 1}/{A+Bex{P(y)}}}. If L(y) = P'(y)exDoP(y) }/A-Eex0.P(y) ,.

then (d/dyl k* (y) = Bk*(y) {L(y-a)-L(y) }. Now, for r <0, L is strictly ncreasing.

so that the graphs of L(y-a) and of L(y) are parailel and do not meet (because of

the assumption that a is different from zero, that s, g an'a s are not orthcccnal)

The derivative of k* has thus constant sign and k* is a monotone function which

is unbounded and positive.!

Proposition 11

pf. : It suffices to establish that sup k (0) !E,G}. = exp{ 1 ,R s!, ,2'.. One has

IS 1 R > Since (I+T " I+RGRp <RGR.s,s> > -1
: { that <Gs,s> = I IR < l- m R ' - " i>. Sinc = -

and thus -J<Gs,s> < JR-isl !2 . Conseuently

k(0) <{e+(1-E)det (l+T Ili{ (1-E)det (I+T )+cexp-I 'R - sj1,). For a and b

Q Q 'P

positive and c strictly larger than one, the function (a+bcx)/(a+bx) is increasing

and bounded by c. Thus k(0) < exp{1i R-s 121. On the other hand, if

A = (1-c)det ( I+T Q ) and i = e,

k(O) (+ ) {;exp{-1I]R sjii2)+uexp{- <(I+T ) s,>}} exp{ I IR sl 121.
P Q P

So, by convexity,

k(0) _exp{- (X+u)-(X I R pis! +U H(+TQ)- iI211 exp{ !Rpls!121

If Hn is the subspace spanned by e . en, lin the pojection onto Hn and It

that onto H set TQ= nl n and En = 1-{1/(1+n)}n. Then det (l+T ) = (1+n) 1 n

and nand I I (I+TQ )- s1' 112 (11 +n)-I [nSl 12+1 1nl 12. Taking the limit as n grows
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yields k(0)> ex {'j. RpSI . ./
P

Proposition 12

-1
pf. : When G. is nonnecative. 3 n < kn , x ) < 3 and thus

P C (dP /dPaM < Pc*.'dP- !dP(-,, P"'- dP /dP> zi/M Since dP /dP is an n" n - -

continuous function, the resuit follows from the orooerties of weak convergence.:

Prooosition 13

ef. : Let h* = Rh/ I 'RhI !. One then has that E .exp iXh'!}!
P P Q

{1-<RpARph*,h*><Rph, h>/trace(AR pY+I '1)exP -7*<R, , ,h>l. So, if

W-lim Q n = P and k is a vector in the range of Rp, with norm enual to one,

lim s= lim !!A'RPk! 12/{trace (A ,)+' 'At-an!i2 .=O..~ ~ lir Pn n~p n l~n, 2 :.

Proposition 14

pf. : To obtain the extreme values of k. one studies the function k fs*+tx) as a

function of t. It turns out that s* must be of the form s* = a+Xs+aA , with aA in

the kernel of A, for s* to be extremal. X is obtained using this repre entation.i

Proposition 15

. : If Xm corresponds to S* . and X to s' in the proof of Proposition l14,

then Pc(D (X) >Ioga-Iogk (a+,ms+aA PC,'sdPc,,'dPa) < C({D (X) >loga-logk (a+)M s+aA)

Then, if d = 4c/<As,s>, k(a+,m s+a) rl+(l+d) I/{l+d) -11, which increases

strictly from zero to one as d goes from zero to infinity. If now W-limpC = P

and lim sup Cn/cn < -, lim <A nS, S>/4cn = 0 and lim k(an').n,mS-a =1./
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